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Abstract— We propose a novel similarity measure, called
the correntropy coefficient, sensitive to higher order moments
of the signal statistics based on a similarity function called
crosscorrentopy. Crossorrentropy nonlinearly maps the original
time series into a high-dimensional reproducing kernel Hilbert
space (RKHS). The correntropy coefficient computes the cosine
of the angle between the transformed vectors. Preliminary
experiments with simulated data and multichannel electroen-
cephalogram (EEG) signals during behavior studies elucidate
the performance of the new measure versus the well established
correlation coefficient.

I. I NTRODUCTION

Quantification of dynamical interdependence in multi-
dimensional complex systems with spatial extent provides
a very useful insight into their spatio-temporal organiza-
tion. For instance, understanding how functional interaction
among different brain regions is important in the context of
brain information processing [1]. In practice, the underlying
system dynamics are not accessible directly. Only the ob-
served time series can help decide whether two time series
collected from the system are statistically independent or not,
and further elucidate any hidden relationship between them.
Extracting such information becomes more difficult if the
underlying dynamical system is nonlinear or the couplings
among the subsystems are nonlinear and non-stationary.

There has been extensive research aimed at detecting the
underlying relationships in multi-dimensional dynamical sys-
tems. The classical methodology employs a linear approach,
in particular, the cross correlation and coherence analysis [2],
[3]. Cross correlation measures the linear correlation between
two signals in the time domain, while the coherence function
specifies the linear associations in the frequency domain by
the ratio of squares of cross spectral densities divided by
the products of two auto-spectra. There have been several
extensions of correlation to more than two pairs of time
series such as directed coherence, directed transfer functions
and partial directed coherence [4], [5]. Unfortunately, linear
methods only capture linear relationships between the time
series, and might fail to detect nonlinear interdependencies
between the underlying dynamical subsystems.

Nonlinear measures include mutual information and state-
space methods. The generalized mutual information function
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appears as a widely used technique for quantifying nonlin-
ear correlation [6]. However, a large quantity of noise-free
stationary data is required to estimate these measures based
on information theory, which restricts their applications in
practice. Rosenblumet al. proposed phase synchronization
to quantify interdependencies between dynamical systems
[7]. In this approach, the instantaneous phase using Hilbert
transforms is computed and interdependence is specified
in terms of time-dependent phase locking. Another line of
research is based on nonlinear dynamical system theory.
The similarity-index technique and its modifications have
been proposed to measure the nonlinear asymmetric inter-
dependencies between time series by computing the ratio
of average distances between index points, their nearest
neighbors and their mutual nearest ones [8], [9], [10]. Stam
et al. proposed the synchronization likelihood to offer a
straightforward normalized estimate of the dynamical cou-
pling between interacting systems [11]. There are several
drawbacks associated with these techniques based on state
space embedding. Estimating the embedding dimension of
times series corrupted by measurement noise for a valid
reconstruction, searching a suitable neighborhood size and
finding a constant number of nearest neighbors are a few of
many constraints that severely affect the estimation accuracy
[10], [12].

In this paper, we introduce a novel functional measure,
called thecorrentropy coefficient, to characterize dynami-
cal interdependencies between interacting systems. Corren-
tropy is a new concept introduced by our research group
to quantify similarity using the higher order statistics in
random processes based on a reproducing kernel Hilbert
space method [13]. By nonlinearly transforming the random
processes into a high dimensional RKHS and computing
the “conventional” correlation on the transformed signals,
correntropy is sensitive to both the higher order statistical
distribution information and temporal structure of the original
random process. Correntropy can be applied both to one
time series, called theautocorrentropy, or a pair of multidi-
mensional random variables, called thecrosscorrentropy. In
the context of characterization of interdependence between
coupled dynamical systems, the crosscorrentropy is used.
In this paper, we work with thecentered crosscorrentropy,
which subtracts the mean of the transformed data in the
same spirit of the conventional covariance function. Based
on the centered crosscorrentropy, thecorrentropy coefficient
is defined to characterize the interdependence between the
two transformed time series (or the original two random
variables). If two random variables or two time series are
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independent, then the correntropy coefficient becomes zero;
if two are the same, then it attains maximum value 1; the
correntropy coefficient achieves -1 when the two random
variables are in the opposite directions.

The paper is organized as follows. In Sec. II, we briefly in-
troduce the newly proposed correntropy concept and present
the method of the correntropy coefficient in details. We
also explores the correntropy coefficient from geometrical
perspective based on the reproducing kernel Hilbert space.
Experiments of the correntropy coefficient on simulated data
and real EEG signals are presented in Sec. III. We conclude
the work in Sec. IV.

II. M ETHOD

Given two random variablesx and y, the “generalized”
crosscorrelation function, calledcrosscorrentropy[14] is
defined as

V (x, y) = E[κ(x, y)], (1)

where E denotes the statistical expectation operator and
κ(·, ·) is a symmetric positive definite kernel function. The
most widely used kernel function is the Gaussian kernel
which is given by

κ(x, y) =
1√
2πσ

exp{− (x− y)2

2σ2
}, (2)

whereσ is the kernel width. When no ambiguity exists we
will call crosscorrentropy simply correntropy. Correntropy is
also a positive definite function and since the RKHS structure
is defined by the kernel, the RKHS induced by correntropy
has unique properties. If we apply the Taylor series expansion
for the Gaussian kernel in the correntropy definition, it can
be easily seen that it compactly contains all even moments
of the random variables(x − y) [13]. Hence, correntropy
includes higher order statistical information about the random
variables.

From the traditional parameter estimation point of view,
the extraction of the mean value is the most important
preprocessing step before computing the estimate of interest.
However, with the presence of the nonlinear transformation
in the definition of correntropy, we are unable to explicitly
remove the mean and have to rely on a different approach.
Therefore we define the “generalized” crosscovariance func-
tion, called thecentered crosscorrentropy, as

U(x, y) = E[κ(x, y)]− ExEy[κ(x, y)] (3)

=
∫∫

κ(x, y)(fX,Y (x, y)− fX(x)fY (y))dxdy

Notice that the crosscorrentropy is the joint expectation of
κ(x, y), while the centered crosscorrentropy is the difference
between the joint and product of marginal expectations of
κ(x, y).

An important observation here is that when two ran-
dom variablesx and y are independent, in other words,
the joint probability density function (PDF)fX,Y (x, y)
equals the product of two marginal PDFsfX(x)fY (y),
then E[κ(x, y)] = ExEy[κ(x, y)]. Therefore the centered

crosscorrentropy reduces to zero only if the two random
variables are independent. This is a much stronger condition
than uncorrelatedness, as required by the conventional cross-
covariance function in order to achieve zero. It clearly shows
the incorporation of higher order information in centered
crosscorrentropy.

By normalizing the centered crosscorrentropy, we can
define the “generalized” correlation coefficient, called the
correntropy coefficient, as

η =
U(x, y)√

U(x, x)U(y, y)
, (4)

whereU(x, y) is the centered crosscorrentropy function for
x and y, and U(x, x) and U(y, y) are the centered auto-
correntropy functions for variablesx andy respectively. The
absolute value of the correntropy coefficient is bounded by 1.
When two random variables are independent, the correntropy
coefficient becomes 0. It attains 1 if two random variables
are the same and -1 when they are in opposite direction with
a large kernel size. Hence, the correntropy coefficient is a
suitable interdependence measure for interacting dynamical
systems. If two random variables are uncorrelated but not
independent, the correntropy coefficient shall produce a non-
zero value (which depends on the parameter, kernel width
used in Gaussian kernel). However, the conventional corre-
lation coefficient will be zero. In the context of generalized
synchronization, the correntropy coefficient shall characterize
both higher order relationship and nonlinearity between
interacting systems.

According to the Moore-Aronszajn Theorem [15] of
Hilbert space analysis, the positive definite kernelκ(·, ·)
in the definition of the centered crosscorrentropy uniquely
determines a data independent reproducing kernel Hilbert
space, denoted asHκ. It turns out that the input data is
mapped onto the surface of a sphere with the Gaussian kernel
[13]. Moreover, it can be easily proved that the centered
crosscorrentropy itself is also non-negative definite. Conse-
quently, the centered crosscorrentropy uniquely determines
another, data dependent, reproducing kernel Hilbert space,
denoted byHU , by the Moore-Aronszajn Theorem [15].
This enables us to get insights into the geometry of the
correntropy coefficient. According to the Mercer’s theorem
[16], any continuous non-negative symmetric kernel function
possesses an eigen-decomposition as follows

U(x, y) =
∞∑

n=0

γnψn(x)ψn(y) = 〈Ψ(x), Ψ(y)〉 (5)

Ψ : x 7→ √
γnψn(x), n = 1, 2, . . . ,

where γn and ψn are eigenvalues and eigen-functions for
the centered crosscorrentropy respectively, and〈 , 〉 denotes
the inner product between two infinite dimensional vectors.
Notice that the nonlinear mapΨ has implicitly embedded
the expectation operator so that every vector inHU becomes
deterministic and contains statistical information of signals,
hence it is data dependent. Substituting Eq. (5) into the



definition of the correntropy coefficient Eq. (4), we obtain

η =
〈Ψ(x), Ψ(y)〉
‖Ψ(x)‖‖Ψ(y)‖ = cos θ, (6)

where ‖Ψ(x)‖ and ‖Ψ(y)‖ are the length of two vectors
Ψ(x) and Ψ(y) in HU respectively, andθ is the angle be-
tween these two vectors. With this geometrical interpretation,
the correntropy coefficient essentially computes the cosine
of the angle between two nonlinear transformed vectors in
RKHS HU induced by the centered crosscorrentropy. In
particular, if two vectors are orthogonal, thenθ is 90◦ and
η equals 0; if two vectors are in the same direction, thenθ
is 0◦ and η equals 1, while two vectors are in the opposite
direction, θ becomes180◦ and η equals -1. Orthogonality
between vectorsΨ(x) and Ψ(y) in HU corresponds to
independence between random variablesx andy. When two
vectors are in the same or opposite directions, this suggests
a strong dependence between random variablesx andy.

The RKHS approach to analyze the conventional correla-
tion function was originally proposed by Parzen [17] because
the correlation function is also non-negative definite, thus
it determines a unique reproducing kernel Hilbert space,
denoted asHR. Grenander analyzed the standard correlation
coefficient from RKHS perspective in [18]. BothHR andHU

are data dependent reproducing kernel Hilbert spaces, how-
everHU implicitly embedsHκ which incorporates higher
order statistics intrinsic in the data. Therefore the correntropy
coefficient requires independence of two signals to make
two corresponding vectors inHU orthogonal, while the
standard correlation coefficient only needs uncorrelatedness.
This also reinforces the claim that correntropy coefficient
is able to quantify the nonlinearity and higher order rela-
tionship between interacting dynamical systems in terms of
synchronization detection.

In practice, we only have a finite number of data points or
time series samples available from the dynamical system. So
we have to work with the estimate of the correntropy coeffi-
cient. Substituting the definition of centered crosscorrentropy
(3) into the correntropy coefficient (4) and approximating
the ensemble average by the sample mean, we can obtain an
estimate of the correntropy coefficient directly from data,

η̂ =

1
N

N∑

i=1

κ(xi, yi)− 1
N2

N∑

i,j=1

κ(xi, yj)

√
κ(0)−

∑N
i,j=1 κ(xi, xj)

N2

√
κ(0)−

∑N
i,j=1 κ(yi, yj)

N2

,

whereN is the total number of samples,1N2

∑N
i,j=1 κ(xi, yj)

is called thecross information potentialbetweenx and y,
1

N2

∑N
i,j=1 κ(xi, xj) and 1

N2

∑N
i,j=1 κ(yi, yj) are again the

information potential forx andy respectively [19], andκ(0)
is the value of Gaussian kernel (2) when the argument(x−
y) = 0.

III. E XPERIMENTS

In this section, we apply the correntropy coefficient to sim-
ulated data and real EEG signals collected from a behavioral

experiment paradigm.

A. Two Unidirectionally Coupled H́enon maps

The first experiment compared the correntropy coefficient,
the conventional correlation coefficient and the similarity in-
dex, a nonlinear interdependence measure proposed in [9], in
detecting nonlinear interdependence of two unidirectionally
coupled H́enon mapsX andY defined as

X :
{

xn+1 = 1.4− x2
n + bxun

un+1 = xn,

Y :
{

yn+1 = 1.4− [Cxn + (1− C)yn]yn + byvn

vn+1 = yn.

Notice that systemX drives systemY with a nonlinear
coupling strengthC. C ranges from 0 to 1 with 0 being no
coupling and 1 being complete coupling. Parametersbx and
by are both set to 0.3 as canonical values for the Hénon map
when analyzing identical systems andbx = 0.3 andby = 0.1
for non-identical systems. For each coupling strength, we
discard the first 10000 time series samples as a transient and
keep the next 500 data points for our experiment. The kernel
width σ used in Gaussian kernel (2) is chosen to be 0.001
using the Silverman’s rule [20]:

σ = 0.9AN−1/5,

whereA is the smaller value between standard deviation of
data samples and data interquartile range scaled by 1.34, and
N is the number of data samples. The three measures are
calculated betweenx andy time series.

Fig.1 shows the correlation coefficient, the correntropy
coefficient and the similarity index as functions of coupling
strengthC. It can be seen that the correntropy coefficient
generates exactly the same result as the similarity index [9],
where both measures attain the value 0 forC < 0.7 suggest-
ing no synchronization between two systems and reach the
value 1 forC ≥ 0.7 indicating perfect synchronization. The
critical thresholdC = 0.7 corresponds to the point when
the maximum Lyapunov exponent of the response system
becomes negative and identical synchronization between
the systems takes place [9]. On the other hand the con-
ventional correlation coefficient performs erratically in the
unsynchronized regionC < 0.7. This clearly demonstrates
that the correntropy coefficient outperforms the correlation
coefficient in characterization of nonlinear coupling between
two dynamical systems. Compared to the similarity index,
the correntropy coefficient has the advantage of avoiding
estimating embedding dimension, choosing nearest neigh-
borhood and other problems associated with state space
embedding method [9], [12]. The computational complexity
of the correntropy coefficient is still manageable, and the
kernel size is easy to estimate.

Next we test how sensitive the correntropy coefficient is to
time dependent sudden change in the dynamics of interacting
systems due to coupling strength. In experiment, change in
coupling strength can cause sudden change in the dynam-
ics of interacting systems, which basically generates non-
stationarity in time series. To study such transient dynamical



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Coupling Strength C

1

0

0.2

0.4

0.6

0.8

1

In
te

rd
e

p
e

n
d

e
n

c
e

0

0.2

0.4

0.6

0.8

1
Correlation coefficient 

Correntropy coefficient 

Similarity Index 

Fig. 1. Comparison of the correlation coefficient, the correntropy coefficient
and the similarity index in characterization of synchronization between two
unidirectionally coupled Henon map.

phenomenon, both identical (bx = by = 0.3) and non-
identical (bx = 0.3 andby = 0.1) Hénon maps are considered
here. Dynamical systems are coupled only during a single
epoch and otherwise uncoupled for both cases [10], [11].
We set the coupling strengthC = 0 for n ≤ 10150 and
n ≥ 10250 and C = 0.8 for 10150 < n < 10250. Only
400 data samples are plotted after the first 10000 data are
discarded as transient. The sliding window used to compute
the correntropy coefficient is chosen to contain 8 data.
Kernel size is set to 0.2 for identical map and 0.3 for non-
identical map. The results are averaged over 20 independent
realizations of different initial conditions ranging 0 to 1. Fig.
2 plots the correntropy coefficient curves for identical and
non-identical maps. In uncoupled regions,η fluctuates around
0.01 baseline for identical map and 0.001 for non-identical
map. A sharp and clear increase occurs att = 150 when 0.8
coupling strength between systemsX and Y is introduced,
and there is a sharp and clear decrease inη falling off back
to the baseline level when coupling strength between two
systems reduces to zero att = 250. The interval whereη
is noticeably higher than the baseline level matches nicely
to the coupling interval. This phenomenon is observed both
in identical and non-identical H́enon maps. Therefore, the
correntropy coefficient is potentially able to detect sudden
change in the coupling between two interacting dynamical
systems with a high temporal resolution, which makes this
measure suitable for non-stationary data sets.
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Fig. 2. Time dependent of the correntropy coefficient for unidirectionally
coupled H́enon maps (a) identical (bx = by = 0.3) and (b) non-identical
(bx = 0.3 and by = 0.1). The coupling strengthC = 0.8 for the interval
between 150th and 250th time samples andC = 0 for the rest of time.

B. EEG signals

In the second experiment, we applied the correntropy
coefficient to real EEG signals. The electrical potentials on
the surface of the scalp of a human subject were measured
and recorded with the NeuroScan EEG system (NeuroScan
Inc., Compumedics, Abbotsford, Australia). A 64-channel
cap was used with electrode locations according to the
extended international 10/20 system and with a linked-
earlobe reference. Horizontal and vertical electrooculogram
(HEOG and VEOG) signals were also recorded for artifact
rejection using two sets of bipolar electrodes. The data
sampling rate was fixed at 1000Hz and the online band-
pass filter range was set to be maximally wide between
0.05Hz and 200Hz. Subjects were presented repeatedly (200
times) with uni-modal auditory and visual stimuli delivered
in the central visual and auditory spaces simultaneously and
with the same strength to the left/right eyes and ears, as
well as with simultaneous cross-modal combinations. For
the purpose of this study, only the uni-modal data was
used. The visual stimuli consisted of 5x5 black and white
checkerboards presented for 10ms, while the auditory stimuli
were 2000Hz tones with durations of 30ms. The time interval
between the stimuli in any of the experimental conditions was
random between 1500ms and 2000ms. Following standard
eye-movement artifact rejection procedures and segmentation
into single epochs with alignment at the onset of the stimuli,
all artifact-free epochs were averaged and normalized to zero
mean and unit variance and low-pass filtered at 0-40Hz for
further analysis. We then applied the correntropy coefficient
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Fig. 3. Comparison of the correlation coefficient and the correntropy
coefficient in characterization of synchronization among auditory cortex for
audio stimuli EEG signal.

to the averaged data to quantify the bilateral synchronization
or couplings among the corresponding sensory areas of the
brain. In order to test whether the correntropy coefficient was
able to detect any nonlinear couplings in the EEG signals,
the results were compared to the conventional correlation
coefficient. A window size of 20ms data is used to calculate
both measures corresponding to the duration of a single
dipole activation in the cortex [21]. The kernel widthσ
in Gaussian kernel (2) used in correntropy coefficient was
chosen to be 0.4.

Fig.3 (a) and (b) show plots of the correlation and cor-
rentropy coefficients for the auditory areas of the brain as
a function of time after the subject was exposed only to
the audio stimuli. Several bilaterally-symmetrical pairs of
electrodes were selected in the vicinity of the auditory cortex,
so that both measures were computed for pairs FC5-FC6,
FC3-FC4, C5-C6, C3-C4, CP5-CP6, CP3-CP4. As shown
in Fig.3 (a) and (b), there are two distinct time intervals
0-270ms and 270-450ms in the auditory response. Both
correlation and correntropy coefficients drop at 270ms. This
suggests that both measures are able to detect the changes
in inter-hemispheric synchronization of the auditory regions.
However, as the electrodes are chosen in different locations
away from the auditory cortex, it is expected that during
the synchronization phase (0-270ms) the synchronization
measures for different pairs should be different. Fig.3 (a)
shows that the correlation coefficients for all 6 pairs are
grouped together and are unable to detect the difference
in activation, while Fig.3 (b) suggests that the correntropy
coefficient can differentiate successfully the synchronization
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Fig. 4. Comparison of correlation coefficient and correntropy coefficient
in characterization of synchronization among occipital cortex for visual
stimulus EEG signal.

strength among different areas of the cortex above the left
and right auditory regions. Notably, as expected from pre-
vious studies, pairs FC5-FC6 and FC3-FC4 exhibit stronger
synchronization strength than the others, while most posterior
pairs CP5-CP6 and C5-C6 have weaker synchronization
strength. Also the synchronization patterns reveal lateral
similarity in time for the pairs FC5-FC6 and FC3-FC4,
for CP5-CP6 and C5-C6, and for CP3-CP4 and C3-C4.
Furthermore the correntropy coefficients for pairs C5-C6,
C3-C4 and CP3-CP4 peak simultaneously at 90ms which
corresponds to the first mean global field power (MGFP)
peak of the EEG signal. These differences indicate that the
correntropy coefficient is more sensitive and is able to extract
more information as a synchronization measure than the
conventional correlation coefficient.

We also compared both measures when applied to the
visual cortical areas. The measures are presented in Fig.4
as a function of time when the subject is exposed only
to visual stimuli. Again, a window size of 20ms data is
used to compute both the correlation and the correntropy
coefficients, and the kernel widthσ is again set to 0.4 as
in the previous case. We also chose bilaterally symmetrical
pairs of electrodes O1-O2, PO7-PO8, PO5-PO6, P7-P8, P5-
P6 and P3-P4. In Fig.4 (b) the correntropy coefficients for
all pairs except for O1-O2 show similar synchronization
patterns. The correntropy coefficient increases at first, then
reaches a peak around 275ms, after which it drops to lower
levels. The maximum values of the correntropy coefficients
around 275ms correspond to the peak P1 in the visual evoked
potential [22]. As expected the synchronization between



occipital channels O1 and O2 has the maximum strength
and stays high until it decreases around 350ms. Thus the
correntropy coefficient shows that the extra-striate visual
networks become increasingly recruited and synchronized
until about 275ms after the stimulus onset, while the primary
visual cortex is highly synchronous for a longer period
of time, until about 350ms after onset. The channels pair
P7 and P8 exhibits the weakest synchronization strength
since it is located the farthest away from the primary visual
cortex compared to other electrode pairs. On the other hand,
the correlation coefficients for most channel pairs group
together and display the same level of synchronization until
its sharp decrease at around 500ms (except for P7-P8). The
synchronization between P7 and P8 has irregular patterns
with a local minimum around 200ms. This comparison
clearly demonstrates that also in this case the correntropy
coefficient measure outperforms the correlation coefficient
in the quantification of the EEG signal coupling between the
bilateral occipital regions of the brain in response to visual
stimuli.

IV. CONCLUSION

In this paper, we propose the correntropy coefficient as a
novel nonlinear interdependence measure. Due to a positive
definite kernel function, the correntropy coefficient implicitly
maps the original random variables or time series into an
infinite dimensional reproducing kernel Hilbert space which
is uniquely induced by the centered crosscorrentropy func-
tion and essentially computes the cosine of the angle be-
tween the two transformed vectors. Orthogonality in RKHS
HU corresponds to independence between original random
variables. Comparisons between the correntropy coefficient
and the conventional correlation coefficient on simulated
two unidirectionally coupled H́enon maps time series and
EEG signals collected from sensory tasks clearly illustrate
that the correntropy coefficient is able to extract more in-
formation than the correlation coefficient in quantification
of synchronization between interacting dynamical systems.
These preliminary findings warrant further investigation to
characterize better and validate this new nonlinear measure
of similarity, which is much simpler to apply than the ones
available in the literature. The sensitivity to the kernel size
and the dependence to the amplitude of the signals must also
be fully studied theoretically and practically.
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