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Abstract Static hemodynamic or neuroelectric images of

brain regions activated during particular tasks do not con-

vey the information of how these regions communicate to

each other. Cortical connectivity estimation aims at

describing these interactions as connectivity patterns which

hold the direction and strength of the information flow

between cortical areas. In this study, we attempted to

estimate the causality between distributed cortical systems

during a movement volition task in preparation for exe-

cution of simple movements by a group of normal healthy

subjects and by a group of Spinal Cord Injured (SCI)

patients. To estimate the causality between the spatial

distributed patterns of cortical activity in the frequency

domain, we applied a series of processing steps on the

recorded EEG data. From the high-resolution EEG

recordings we estimated the cortical waveforms for the

regions of interest (ROIs), each representing a selected

sensor group population. The solutions of the linear inverse

problem returned a series of cortical waveforms for each

ROI considered and for each trial analyzed. For each

subject, the cortical waveforms were then subjected to

Independent Component Analysis (ICA) pre-processing.

The independent components obtained by the application

of the ThinICA algorithm were further processed by a

Partial Directed Coherence algorithm, in order to extract

the causality between spatial cortical patterns of the esti-

mated data. The source-target cortical dependencies found

in the group of normal subjects were relatively similar in

all frequency bands analyzed. For the normal subjects we

observed a common source pattern in an ensemble of

cortical areas including the right parietal and right lip

primary motor areas and bilaterally the primary foot and

posterior SMA areas. The target of this cortical network, in

the Granger-sense of causality, was shown to be a smaller

network composed mostly by the primary foot motor areas

and the posterior SMA bilaterally. In the case of the SCI

population, both the source and the target cortical patterns

had larger sizes than in the normal population. The source

cortical areas included always the primary foot and lip

motor areas, often bilaterally. In addition, the right parietal

area and the bilateral premotor area 6 were also involved.

Again, the patterns remained substantially stable across the
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different frequency bands analyzed. The target cortical

patterns observed in the SCI population had larger exten-

sions when compared to the normal ones, since in most

cases they involved the bilateral activation of the primary

foot movement areas as well as the SMA, the primary lip

areas and the parietal cortical areas.

Keywords ThinICA � Distributed current density

estimates � Brodmann areas � Inverse problem � High-

resolution EEG � Functional connectivity � Partial Directed

Coherence

Introduction

Nowadays, different non-invasive brain imaging techniques

are able to provide images of the human cortical activity,

based on hemodynamic (functional Magnetic Resonance

Imaging, fMRI), metabolic (Positron Emission Tomogra-

phy, PET) or electromagnetic (Electroencephalography,

EEG and Magnetoencephalography, MEG) measurements.

However, static images of brain regions activated during

particular tasks do not convey the information of how these

regions communicate with each other. In fact, the concept

of brain connectivity is viewed as central for the under-

standing of the organized behaviour of cortical regions

beyond the simple mapping of their activity [20, 33, 38].

This organization is thought to be based on the interaction

between different and differently specialized cortical sites.

Cortical connectivity estimation aims at describing these

interactions as connectivity patterns which reflect the

direction and strength of the information flow between

cortical areas. To achieve this, several methods have been

already applied on data gathered using both hemodynamic

and electromagnetic techniques [13–15, 25, 51, 53]. Two

main definitions of brain connectivity have been proposed

over these years: functional and effective connectivity [23].

While functional connectivity is defined as temporal cor-

relation between spatially remote neurophysiologic events,

the effective connectivity is defined as the simplest brain

circuit, which would produce the same temporal relation-

ship as observed experimentally between cortical sites. As

for the functional connectivity, the several computational

methods proposed to estimate how different brain areas are

working together typically involve the estimation of some

covariance properties between the different time series

measured from the different spatial sites during motor and

cognitive tasks studied by EEG and fMRI techniques [24,

25, 35, 53]. So far, the estimation of functional connectivity

on EEG signals has been addressed by applying either linear

and non-linear methods which can both disclose the direct

flow of information between scalp electrodes in the time

domain, although with different computational demands

[17, 34, 41, 47, 49, 50, 52]. In addition, due to the evidence

that important information in the EEG signals are often

coded in the frequency rather than time domain (reviewed

in [43]) attention has been focused on detecting frequency-

specific interactions in EEG or MEG signals by analyzing

the coherence between the activity of pairs of structures

[40]. Coherence analysis does not have, however, a direc-

tional nature (i.e., it just examines whether a link exists

between two neural structures, by describing instances

when they are in synchronous activity), and it does not

provide directly the direction of the information flow. In this

respect, two multivariate spectral techniques called Direc-

ted Transfer Function (DTF) and Partial Directed Coher-

ence (PDC) were proposed [11, 36] to determine the

directional influences between any given pair of channels in

a multivariate data set. These estimators are able to char-

acterize at the same time the direction and the spectral

properties of the brain signals, requiring only one multi-

variate autoregressive (MVAR) model to be estimated from

all the EEG channel recordings. The DTF and PDC tech-

niques have been demonstrated [10, 36] to rely on the key

concept of Granger causality between time series [26],

according to which an observed time series x(n) causes

another series y(n) if the knowledge of x(n)’s past signifi-

cantly improves prediction of y(n); this relation between

time series is not reciprocal, i.e., x(n) may cause y(n)

without y(n) necessarily causing x(n). This lack of reci-

procity allows the evaluation of the direction of information

flow between structures.

So far, the causality between brain signals have been

assessed by using time varying information derived from

hemodynamic or electromagnetic signals recorded at the

scalp level [36] or estimated at the cortical level [2, 3, 8].

However, the causality estimation from these brain func-

tional waveforms can depict a single pattern of connec-

tivity involving several brain areas, for each time segment

or in every frequency band analyzed. Since it is well

known that the brain does not produce any ‘‘single wave-

form’’ but rather engages several distributed cortical areas

in order to process information, a question arose about the

appropriateness of the estimation of the functional con-

nectivity between waveforms. In particular, the question is

whether, instead of estimating the causality between single

waveforms derived from the different cortical or scalp

areas, it is possible estimate the causality between ‘‘spatial

patterns of brain cortical activations’’. In fact, it is rea-

sonable to pose the question if it could be more interesting

to estimate the causality (in the sense of the Granger def-

inition) between the activation of distributed cortical sys-

tems or just observe the causality between isolated

waveforms.

In this report, we attempted to estimate the causality

between distributed cortical systems during the execution
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and the imagination of simple movements in a group of

normal healthy subjects and in a group of Spinal Cord

Injured patients (SCI). To estimate the causality between

the spatial distributed patterns of cortical activity in the

frequency domains, we applied a series of processing steps

on the recorded EEG data. First, we estimated the cortical

activity from the EEG recordings by using realistic head

and cortical models for each subjects. This was obtained

by considering the cortical activity occurring in the

Brodmann areas used to segment the cortical models

used. The cortical activities were estimated by using the

solutions of the EEG linear inverse problems as described

previously [2, 3, 8]. Furthermore, we applied Independent

Component Analysis (ICA) pre-processing on the cortical

waveforms derived from the Brodmann areas for each

subject. The application of the ICA to the cortical

waveforms derived from the Brodmann areas returned a

series of basic spatial patterns of activations as well as the

temporal variation of these patterns along the estimated

cortical waveforms. The key point of this processing is

the estimation of causality between the temporal inde-

pendent components calculated for the cortical data by

using the PDC [11]. The application of the PDC between

two different independent components estimated from the

computed cortical waveforms returned an estimation of

the causality between couples of distributed cortical

activation patterns. Hence, the causality of the activation

of the distributed cortical areas occurred not at the level

of single waveforms, but rather at the level of a coordi-

nated series of cortical areas, as described by the spatial

independent components obtained by the ICA.

In this study, we propose to estimate the causality of the

cortical connectivity patterns by exploiting the combined

use of ICA and PDC techniques applied to high-resolution

EEG signals which exhibit a higher spatial resolution than

conventional cerebral electromagnetic measurements made

over or outside of the scalp. The high-resolution EEG

technique includes the use of a large number of scalp

electrodes, realistic models of the head derived from

structural magnetic resonance images (MRIs), and

advanced processing methodologies related to the solution

of the linear inverse problem. These methodologies allow

the estimation of cortical current density from sensor

measurements [7, 27, 32, 42]. Subsequently, a novel

combination of ICA and PDC methods was applied to the

cortical estimates obtained from high-resolution EEG data

related to a movement volition task in SCI patients and in a

control group of normal healthy subjects. The questions at

the basis of this paper are the following:

1. Do there exist different cortical networks elicited by

the proposed volitional tasks causing (in the Granger

sense) the activity of other cortical networks?

2. Are there specific frequency bands in which such

causality relations between the cortical networks are

maximally present during the investigated task?

3. Are there significant differences in the cortical net-

works between normal subjects and SCI patients elic-

ited for the investigated task? Are these differences (if

any) related to any particular frequency bands?

Methods

The estimation of the cortical activity

from high-resolution EEG recordings

High-resolution EEG recordings

Six right-handed healthy subjects and five patients with a

spinal cord injury (SCI) participated in the study. The SCI

was of traumatic aetiology and located at the cervical level

(C7) and all the patients had not suffered from a head or

brain lesion associated with the trauma leading to the

injury. The SCI patients were unable to move their upper

and lower limbs. For the electroencephalographic (EEG)

data acquisition, subjects were comfortably seated on a

reclining chair, in an electrically shielded, dimly lit room.

Informed consent was obtained from each subject after

explanation of the study, which was approved by the local

institutional ethics committee. In the present event-related

experimental design, we adopted a simple motor task

consisting of repetitive self-generated overt movement

executions (for control subjects) and attempts for execu-

tions (for SCI patients) of the right foot dorsal flexion at the

ankle, simultaneously with the lips pursued by the subjects

in both groups (the SCI patients were able to move their

lips). The absence of external cues was chosen in order to

avoid that any part of the observed EEG task-induced

activities related to sensory perception or to processing of

pacing stimuli per se. A 58-channel EEG system (Brain-

Amp, Brainproducts GmbH, Germany) was used to record

the brain electrical potentials by means of an electrode cap

with sensors placed according to the extended 10–20

international system. Structural MRIs of the subject’s head

were taken with a Siemens 1.5T Vision Magnetom MR

system (Germany). The EEG was sampled at 200 Hz, and

100 trials of 8-s durations were recorded for each subject.

Figure 1 shows the electrode cap used for the EEG

recordings and a particular head model employed for the

computations in a normal subject. The figure presents the

four steps involved in the generation of the lead field ma-

trix for the estimation of the cortical current density from

high-resolution EEG recordings, starting from the MRI

images, the EEG electrode cap, and through the generation
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of the model of the head and its final superposition with the

electrodes cap.

Applying the tools for the estimation of the cortical activity

and connectivity

(1) We estimated the cortical activity from the high-

resolution EEG recordings, by using realistic head

models and a cortical surface model with an average

of 5000 dipoles, which were uniformly distributed (see

Appendix). The estimation was obtained by the appli-

cation of a linear inverse procedure [8, 27]. Cortical

activity was then estimated in regions of interest (ROIs)

generated by the segmentation of the Brodmann areas

(B.A.) on the accurate cortical model used. Bilateral

ROIs considered in this analysis were: the primary motor

areas for the foot (MIF) and for the lip movement

(A4_Lip), the posterior supplementary motor areas

(SMAp), the standard premotor areas (A6), the posterior

parietal areas (A7) and the cingulate motor areas (CMA).

The labels of the cortical areas contain also a postfix

characterizing the considered hemisphere (R, right, L,

left). Such ROIs were segmented on the basis of

Talairach coordinates and anatomical landmarks avail-

able. ROIs representing the supplementary motor area

(SMA) were obtained from cortical voxels belonging to

the more general BA 6. In particular, the posterior

SMAp was depicted bilaterally on the medial frontal

wall by following the anatomical landmarks recom-

mended by Picard and Strick [44]: the anterior border of

the SMAp corresponded to a plane perpendicular to the

anterior–posterior commissure (AC-PC) line at the level

of the AC (VAC), and a perpendicular plane at the level

of the posterior commissure (VPC) represented the

SMAp posterior border. Figure 2 presents the cortical

areas as obtained for the realistic head models generated

for each healthy subject. It is possible to note the

different positions of the same cortical areas on the

cerebral surface between the subjects.

For each time point of the recorded EEG we solved the

linear inverse problem, estimated the magnitude for each

one of the thousands of dipoles used for cortical

modelling. Then, we computed the average of the

magnitudes of such dipoles in each ROI considered,

for each time point considered. The resulting cortical

waveforms, one for each predefined ROI, were then

subjected to the ICA analysis to reveal their independent

components. Since the cortical waveforms were obtained

for each single trial and recorded for each experimental

subject, the single-trial signals were concatenated to

each other, after detrending, for consecutive analysis as

described in details further below.

The estimation of distinct cortical activity patterns

by using independent component analysis (ICA)

As described above and in the Appendix, the estimation of

the cortical activity from the EEG recordings returns a cor-

tical current density waveform for each ROI considered, in

each trial analysed. However, it was advantageous to study

Fig. 1 Four steps involved in

the generation of the lead field

matrix for the estimation of

cortical current density from

high resolution EEG recordings.

From left to right, from top to

the bottom the MRI images are

shown for a healthy subject, the

generation of the model of the

head and the superposition with

the electrodes cap
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further these spatially distributed cortical activities in the

ROIs by separating them into independent components each

of which could be projected back to a distinct spatial pattern.

In order to apply the ICA to the cortical current density

waveforms, the following steps have been applied:

(2) Each trial was segmented in order to extract a data

section related to the preparation of the movement to be

performed, starting at 1.5 s before the electromyo-

graphic (EMG) onset. The resulting jth trial will be

denoted as Xj, where Xj is the matrix composed by the

number of ROIs times the number of samples for the jth

trial, where j = 1...100 (total number of trials).

(3) The mean value of each Xj matrix was removed. The

resulting matrix will be denoted as X
j
.

(4) Each trial was concatenated to the next one, and a

matrix X has been obtained composed by the number of

rows, equal to the number of ROIs, and the number of

columns, equal to the number of samples in each trial,

times the number of trials considered. In a concise form,

we have X ¼ ½X1;X2; . . . ;X100�;
(5) The mean value of the X matrix was removed and the

resulting matrix was filtered with a zero-delay low-pass

FIR filter at 40 Hz.

(6) An ICA [16] algorithm was applied to the X matrix,

in order to obtain the demixing matrix W and the matrix

of the independent components Y, according to the

following equation [16]:

Y ¼WX ð1Þ

In agreement with the notation described above, it is also

possible to compute the inverse relation from the array of

the independent component Y to the original concatenated

current density waveforms X by using the mixing matrix A

which is the pseudo-inverse of the matrix W according to

the equation:

X ¼ AY ¼WþY ð2Þ

The matrix A is the matrix of the spatial patterns (in the

cortical space) which when multiplied by the time-varying

loads of all independent components Y, returns the original

data by back-projection. Specifically, in this study we used

the ThinICA algorithm [12, 18, 19], which allowed a mixed

2nd and 4th order cumulants for ICA, and based on criteria

that jointly performed the maximization of higher-order

cumulants and second-order time-delay covariance matri-

ces. Such approach allows us to estimate optimally sources

which have temporal structures and they modeled as

autoregressive processes (AR), as well as independent

identical distributed non-Gaussian components. The

employed simultaneous ICA extraction, which used thin

(economy size) SVD factorizations, combined the robust-

ness of the joint approximate diagonalization techniques

with the flexibility of the methods for blind signal extrac-

tion.

(7). In order to deal with an A matrix having normalized

values, it is possible to transfer the differences in

intensity from the A matrix to the Y component, through

dividing each ith column of the A matrix by its own

maximum value and also multiplying the ith component

of the Y matrix by the same value. This procedure was

performed and returned a normalized A matrix, which

Fig. 2 The cortical regions of

interest (ROIs) employed in this

study for the normal population

investigated. Each ROI is

represented with a different

colour, and the used colour

scheme is common across the

different subjects. Note that the

Cyngulate Motor Areas, located

in the mesial central part of the

cortical surface, are hidden in

the interhemispheric scissure
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we’ll call Anorm, as well as a new independent compo-

nent matrix Y, with its values rescaled according to such

maxima, which we’ll call Yscal. Note that it is still true

that

X ¼ Anorm Yscal ð3Þ

The procedure, as detailed above, returned an estimate

of the Anorm matrix that described the mixing of the

independent spatial cortical activations for the gathered

data, as well as a component matrix Yscal revealing the

temporal behaviour of these independent activations.

Hence, each ith component of the Yscal matrix was related

to the time-varying presence of the ith spatial pattern

described by the ith column of the Anorm matrix in the

gathered EEG data as represented by the X matrix. Now, in

order to assess the possible causality relations between the

cortical pattern activations, we estimated the connectivity

values between the different independent components

described by the matrix Yscal. The connectivity values were

obtained by using the PDC algorithm.

The estimation of the causality between the cortical

activity patterns by using Partial Directed Coherence

(PDC)

(8) The Partial Directed Coherence (PDC; [10]) algo-

rithm, was applied to the Yscal component matrix and

returned a series of causality relationships between the

different independent components, each one related to a

particular spatial activity distribution. The causality

patterns between the independent components were

considered further in this analysis only if they were

statistically significant, in agreement with the procedure

already described previously [2, 3]. A statistical con-

nection between the ith and the jth components of the

Yscal matrix (represented as Yi –> Yj) means that the

series of cortical ROIs involved in the ith spatial pattern

of the Anorm matrix will cause an activity in the series of

cortical ROIs involved in the jth spatial pattern of the

same matrix Anorm. In the sense of the Granger theory,

the inclusion of the Yi independent component (with a

distinct pattern of cortical areas corresponding to the ith

independent component) improves the predictions of the

time series of the Yj independent components in the

multivariate autoregressive model.

(9) For each subject analyzed, three frequency bands

were investigated (theta (4–7 Hz), alpha (8–12 Hz) and

beta (12–30 Hz)). Only causal links with the highest

connectivity in each band were used for successive

analysis. Such connectivity links were those with the

highest statistical significance with respect to the random

values of the PDC computed by using a shuffling

procedure [3, 8, 36]. A statistical difference threshold of

p < 0.01 was adopted for all the computations presented

here, including the comparisons with the shuffled-phase

signals. Hence, for each frequency band and for every

subject, we identified a series of four most-connected

components corresponding to cortical spatial patterns

(‘sources’) that ‘‘caused’’ or drove other cortical spatial

patterns (‘targets’) during the execution of a task. In this

study, these source-target patterns were related to the

preparation of the motor task for 1.5 s before its onset.

Since the independent components were not ordered

between subjects, a possible problem arose when a com-

parison of these spatial patterns between the subjects has to

be performed, in order to extract inferences related to the

group behaviour. In fact, it is well known that the num-

bering of the spatial components is not consistent between

different subjects, i.e., the component number 4 for the

subject kth may not be the same as the component number

4 for the subject jth, and so forth. Then, it is interesting to

have a tool able to couple the independent components

between subjects on the basis of their spatial patterns. This

is important since the goal is to build a set of couples of

cortical spatial patterns (one that ‘‘drives’’ and the other

that is driven) that are common for all the investigated

populations. In order to obtain such ‘‘average’’ cortical

pattern a series of operations have to be performed. The

approach pursued in this study can be described in the

following way:

(10) Each of the top four selected cortical component

couples for each subject of the healthy and SCI study

groups was back-projected to the cortical ROI space.

(11) The state of each reconstructed ROI corresponding

to this single component was evaluated by a binary

representation, containing 1s or 0s, to mark whether

the cortical area was activated or not activated by

the component. Specifically, the 1s indicated that the

normalized dipolar cortical activation exceeded the

threshold interval (–0.2:0.2).

(12) For each subject, the source-target causality binary

representation for each of the four most-connected

couples, as described above, was compared with all the

other top couples of activation representations for all the

other subjects analyzed. Such comparisons were per-

formed by using a Pearson correlation index. Each

comparison was made taking into account the distribu-

tion of the cortical areas in patterns that ‘‘caused’’

another one and the distribution of the areas in cortical

patterns that were ‘‘caused’’ by the previous one.

(13) The correlation indices between all couples of

binary representations between the subjects were then

used to compile a ranking list of pattern similarities. The

112 Brain Topogr (2007) 19:107–123
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top-matching couples of representations for each subject

were selected to form a final list from which the average

was computed and represented the coupling between the

patterns. This average measure characterized the cau-

sality links between the spatial cortical patterns in the

population.

(14) For each spatial source or target pattern, the

representations of some cortical ROIs in the presented

Figs. 3–8 contain spheres, indicating the number of

subjects in which these particular cortical ROIs are

activated in the analyzed pattern. The higher the number

of subjects in the population that have activated the jth

ROI, the larger is the radius of the sphere for such ROI

in the ‘‘average’’ representation. The colour of the

spheres also codes the existence of the common

activated ROI in the group of subjects considered. In

particular, the yellow spheres show the presence of

the activated ROI in all of the subjects belonging to the

analyzed group, and such colour is associated with

the greatest sphere size. The red colour is used to code

the presence of the activated ROI in all but one subjects

belonging to the group, and the size of the sphere is

smaller than for the yellow one. The blue colour is used

to code the presence of the activated ROI in all but two

subjects, and the relative size is smaller than for the red

one. If the activated ROI is present in all, but three

subjects of the experimental group or less, then no

sphere is drawn.

Following these procedures, it is possible to obtain

different average’’ couples of spatial patterns for each

frequency band. Such ‘‘average’’ cortical patterns corre-

spond to the time period of preparation for movement in

the subjects.

Results

Following the methodology presented above, we estimated

from the high-resolution EEG recordings the cortical

waveforms at the ROIs selected for all the group popula-

tion. The solution of the linear inverse problem returned a

series of cortical waveforms for all ROIs considered and

for all trials analyzed. In each subject, the cortical wave-

forms were then subjected to a ThinICA processing,

according to the procedures depicted in the ‘‘Methods’’

section. The independent components obtained by the

application of the ThinICA algorithms were then processed

by the PDC algorithm, in order to extract the directed

causality between the spatial cortical patterns of the

Fig. 3 Average cortical causality pattern in the theta band for the

group of control subjects. Same conventions used in the previous

figure. First row presents correlation patterns between the subjects

with a value of 79.9%. Second row presents correlation patterns with

values of 72%. The realistic head below shows the equivalent

representations on the cortical surface. The colour of the spheres

codes for the number of subjects in which the ROI is present in the

spatial pattern. In yellow, the ROIs present in all the six subjects, in

red the ROIs present in five subjects out of six and in black the ROIs

present in four subjects. Note that the red sphere in the right cyngulate

area in the target cortical pattern (on the right) is almost completely

hidden from the cortical surface in the realistic reconstruction of the

cortex presented here
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estimated data. Such couples of cortical patterns were ob-

tained for each one of the three frequency bands employed

in this study. Note that the intensity of the spatial pattern of

each square belongs to the interval (–1, 1), being normal-

ized with the amplitude values moved into the temporal

waveforms of the independent components (from the jth

column of the Anorm matrix to the jth component of the

Yscal matrix).

We applied an appropriate algorithm to locate the sim-

ilarities between the computed couples of cortical patterns

in the different subjects, and the ‘‘average’’ couples of

spatial patterns in each frequency band were then gener-

ated. The following figures illustrate these ‘‘average’’

causality patterns due to the preparation of an active foot

movement in the different frequency bands analyzed for

the group of normal subjects and to the volition of move-

ment for the group of SCI subjects. As already described in

the method section, here the yellow spheres indicate that all

the subjects in the group have the same ROI engaged in the

causality link between cortical patterns, while the red

spheres on a ROI indicate that all the subjects but one have

the same ROI activated, and the black spheres illustrate

that all the subjects but two have the same ROI activated.

In the following, only results from cortical causality pat-

terns that presented a spatial correlation of more than 70%

are displayed in the different frequency bands.

Normal population

Figure 3 shows the cortical pattern in the theta frequency

band for the normal population analyzed.

Taking into consideration the yellow and the red spheres

(6/6 or 5/6 subjects), it seems that in the theta frequency

band there was a drive from a cortical network involving

the right cingulate motor area (CMA), right foot movement

area (MIF), as well as the right parietal area (A7) and

supplementary motor area (SMA) toward the right MIF

and SMA. In this pattern, the MIF bilaterally as well as

the right premotor area (A6) was driving the right CMA.

No other cortical coupling patterns were statistically

Fig. 4 The coupling patterns in

the alpha frequency band for the

group of normal subjects.

Correlation index equal to 79%.

Same conventions of the

previous figure

Fig.5 Causality patterns

revealed in the normal subject

population in the beta frequency

band. First row: correlation

index at 71%. Second row:

correlation index at 72%. Same

conventions are used as in the

previous figure
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Fig. 6 Cortical causality

pattern for the theta band in the

SCI population. Correlation

value between the population is

76.7% (first row). In the second

row the correlation value is

77.6%, while in the third row

the correlation is 74.6%. Same

conventions than in the previous

figures

Fig. 7 Causality patterns

presented in the SCI population

in the alpha frequency band.

First row shows a correlation

index of 80%. Second row

shows a correlation index of

73.8%
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significant among the subjects analyzed with more than

70% correlation index in the theta frequency band.

The coupling patterns in the alpha frequency band for

the group of normal subjects showed a correlation index

equal to 79%. The pattern is presented in Fig. 4.

This pattern revealed that the activation of the primary

motor area of the foot bilaterally (MIF), with contributions

from the right parietal areas (A7) and CMA, was driving

the right MIF and the SMA cortical areas.

We observed two cortical causality patterns over the

70% threshold of the correlation index in the beta fre-

quency bands for the normal subjects in this study. In

Fig. 5, the first row shows the causality pattern which had a

correlation index of 71%, while the second row shows the

causality pattern having a correlation index of 72%.

Such a pattern suggests a major involvement of the

primary left foot area and the CMA in the driving of SMA,

bilaterally. The second pattern available for normal sub-

jects in the beta band is characterized by a slightly higher

correlation index than before, which means a good agree-

ment between the subjects. This second causality pattern in

the normal group suggests that the primary left foot motor

area was driving the activity in the primary motor areas

bilaterally.

SCI population

The SCI population shows in this frequency band three

spatial pattern with a correlation values more than 70%.

They are presented in Fig. 6

The cortical causality patterns depicted above in the first

two rows show a involvement of a large network of cortical

areas on the left (yellow spheres) toward the activation of

the left SMA (yellow sphere of the right panel). The second

row presents a cortical causality pattern for the theta band

different than those presented above. In such row the SCI

group presents here a correlation index of 77.6% and the

activation of the primary motor foot area that drives the

activation of roughly the same areas plus the SMA bilat-

erally. The last causality pattern in the theta band over the

70% of the correlation index for the SCI subjects is pre-

sented in the third row. In this case, the pattern depicts the

activation of a large network of cortical areas toward the

right SMA.

In the alpha band the SCI population presents two spa-

tial cortical patterns over the 70% of the correlation index,

with values of correlation of 80% and 73.8%. The first

pattern in the alpha band for the SCI population is pre-

sented in the first row of Fig. 7.

Such pattern suggests an involvement of the primary

motor area of the foot area bilaterally as well as the parietal

area driving the left SMA. The second cortical connectivity

pattern in the alpha frequency band for the SCI group has a

correlation index of 73.8% and it is presented in the second

row of the previous figure. Such pattern is characterized by

an involvement of the primary motor foot area and the area

4 right that drives the left motor areas (area 4 and MIF).

In the beta band, the SCI population presents two pat-

terns of cortical causality having the correlation index over

the 70%. In particular, the first row is presented in the first

Fig. 8 Causality pattern

presented in the SCI population

in the beta frequency band. First

row shows a correlation index

of 79.4%, while the second row

shows a correlation index of

71.4%

116 Brain Topogr (2007) 19:107–123

123



row of Fig. 8 and has a correlation index of 79.4%. This

correlation index is very high when compared to the

highest index (72%) of the normal population.

This cortical pattern suggests an involvement of the left

primary foot, SMA and A4 cortical areas as well as the

right parietal areas (A7) that drives the cortical areas A4

and the SMA. The presence of the A7 is of interest in this

driving pattern, when compared to the normal one. The

second pattern for the SCI population has a correlation

index of 71.4% and is presented in the second row of

Fig. 8. This pattern is characterized by an activation of

cortical areas similar to those activated before (bilateral

primary foot area, A6) plus the right SMA and A7 that

drives essentially the right primary foot area bilaterally as

well as the ROIs representing the SMA.

Methodological considerations

The methodological approach presented here aims at

describing the generation of a set of mathematical tools

able to depict the existence of distributed cortical networks

that drive, or ‘‘cause’’, in the sense of Granger theory, the

activity of other distributed cortical networks, as revealed

by analysis of data from high-resolution EEG recordings in

humans. This methodological approach uses high-resolu-

tion techniques for the estimation of the cortical activity in

regions of interest from EEG recordings. By using this

technology we were able to estimate the cortical current

density in particular ROIs depicted on the realistic model

of the cortex and based on the Brodmann cortical areas for

each subject. The precise description of each ROI was

made possible by the use of realistic models of the cortex

of each subject. Subsequently, the application of ThinICA

algorithms for the estimation of independent cortical acti-

vations in the ROIs returned a set of time varying wave-

forms (temporal independent components) as well as a

series of spatial patterns of activations (spatial independent

components) that could be further processed. In particular,

we analyzed the causal relationship between the indepen-

dent components in the time domain, by using the estab-

lished algorithms for the estimation of functional

connectivity such as the DTF or PDC to unveil the cau-

sality between the ThinICA waveforms. In this way, it was

possible to observe patterns of distributed cortical sources

that ‘‘caused’’, in the sense of the Granger theory, other

patterns of distributed cortical sources in different fre-

quency bands. This means that the inclusion of a particular

set of waveforms from the ‘‘driving’’ cortical patterns

improved the prediction of the ‘‘driven’’ cortical patterns

in the multivariate autoregressive modeling. The presented

approach describes how cortical patterns could drive other

cortical patterns, by using the concept that such patterns are

‘‘independent’’ in the sense provided by the application of

an ICA to the cortical current density estimations. Specif-

ically, the ThinICA method [12, 18, 19] was used in order

to extract information about the cortical connectivity. In a

previous similar approach, Miwakeichi and co-workers

[39] demonstrated the decomposition into space time-fre-

quency components of EEG signals obtained during cog-

nitive tasks by using an analysis method called parallel

factor analysis (PARAFAC).

The present study examined the performance of tech-

niques commonly used to assess information flows between

scalp electrodes and local field potentials [11, 36, 37] on

real cortical waveforms obtained via the linear inverse

problem solution, using the realistic head volume con-

ductor models and high-density EEG recordings. The

spatial resolution provided by the techniques presented

here has been previously characterized in a series of sim-

ulation studies using the present ROI analysis approach

[5–7, 9]. The connectivity estimator used in the present

study is based on the Granger theory and MVAR models.

The PDC technique has the advantage of providing con-

nectivity links that can be interpreted in the sense of

Granger causality, which includes a concept of direction-

ality. Other techniques have been presented in the literature

for the evaluation of functional connectivity of EEG/MEG

data. For instance, the technique called Dynamic Imaging

of Coherent Sources (DICS) [28, 29], which uses a spatial

filter and a realistic head model, has been recently intro-

duced and employed to assess connectivity between corti-

cal areas from MEG data [28, 29, 45, 46]. This technique

has the advantage, when compared to the PDC method

used here, of a direct mathematical characterization of its

spatial resolution of the point spread function [29]. How-

ever, spectral coherence or DICS techniques do not return

directly the direction of the flow between cortical areas,

though in the latter case DICS could be coupled with

another technique able to estimate such directional flow,

like the Directionality Index [48].

Application on normal and SCI patients of combined

ICA and PDC techniques

In the normal population considered, the source patterns

include bilaterally the primary foot areas as well as the

posterior SMA (SMAp), while the involvement of the right

primary lip motor areas and the posterior parietal areas is

also noted. Such source cortical patterns are active across

all the frequency bands analyzed. Always in the normal

population, the target patterns across all the frequency

bands considered are limited to the cortical networks

involving the primary foot movement area and the pos-

terior SMA bilaterally. Occasionally, the right primary

motor area for the lip movement is also involved. No

involvement of the parietal areas where observed as a
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target of the cortical networks that acts as source patterns

described above.

In summary, the source-target cortical patterns depicted

in a group of normal subjects seems independent from the

frequency bands analyzed and present as a source common

pattern an ensemble of cortical areas including the right

parietal and right lip primary motor areas and bilaterally

the primary foot and posterior SMA areas. The target of

this cortical network, in the Granger-sense of causality, is a

network again composed by the foot primary motor areas

and the posterior SMA bilaterally. A simple relation links

essentially the same cortical areas, but with a clear role of

the parietal right cortical areas in the network of the pri-

mary motor areas.

In the case of the SCI population, the source and the

target cortical patterns have a large size than in the normal

population. The source cortical areas include always the

primary motor areas of the foot as well as of the lips, often

bilaterally. In addition, the right parietal and the bilateral

area 6 are also present. The patterns remain substantially

unchanged across the different frequency bands analyzed.

The target cortical patterns observed in the SCI population

have a larger extension when compared to the normal one,

since they involving often the primary foot movement area

as well as the SMA bilaterally. In addition, the presence of

the bilateral primary lip area is also noted, in conjunction

also with the participation of the bilateral parietal cortical

areas.

A general pattern observed in both the populations

analyzed is the reduction of the cortical areas involved in

the network from the source patterns to the target pat-

terns. In other words, we observed that a larger cortical

network (the source) drives (or Granger-causes) the

activity of a relative smaller set of cortical areas (the

target). This was noted across all the frequency bands and

all the subjects analyzed. However, due to the differences

in the size of the source networks observed between

normal and SCI patients, the general reduction of the size

of the network of the target areas is not identical. Nev-

ertheless, this phenomenon is evident in Figs. 3–8 which

present the source and the target cortical areas during the

preparation of the movement. A possible hypothesis is

that, as the preparation for the action advances, there is a

general reduction of the cortical areas that will be really

involved in the final phase of the movement generation,

from a preliminary phase in which a larger network has

been engaged for the preparation of the joint movement.

In general, the cortical networks involved in the SCI

population are larger than those involved in the normal

population, and this could be explained in the light of the

impairment of the sensory-motor signal flows present in

the SCI patients.

Conclusions

On the basis of the results obtained from the application of

the described techniques to the movement preparation data,

we were able to give the following answers to the questions

posed in the ‘‘Introduction’’ section:

(1) There exist different cortical networks, elicited by the

proposed volitional tasks, which are driving each

other in the normal subjects as compared to the SCI

patients.

(2). There are no specific frequency bands in which such

causality relation between the cortical networks is

maximally present during the investigated task.

Rather, the relations between source and target cor-

tical networks appear to be independent from the

frequency band analyzed.

(3). There are significant differences in the cortical net-

works between normal subjects and SCI patients

elicited during the investigated task. There is an

increase in the size of the cortical network supporting

the will to move in the SCI patients when compared

to the normal population. It should be also noted that

there is a general reduction of the size of the cortical

networks in the causal transition from source to tar-

get, in both populations and for all the frequency

bands analyzed.

The existence of such networks was already underlined

in literature for simple movements in humans (reviewed in

[43]). However, the class of movements investigated here

has been chosen because their spatial details were known in

advance, thus reducing the uncertainty about the possible

results, which could be expected. In that way, we were able

to test better the proposed methodology that combined

independent component analysis and functional connec-

tivity estimates. This combination of previously proven

methods promises to help enhance the understanding of the

properties of the brain cortical activity during motor and

cognitive tasks in humans.
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Appendix

Estimation of functional connectivity by PDC

Let Y be a set of cortical waveforms, obtained from several

cortical regions of interest (ROI):

Y(t) = [ y1ðtÞ; y2ðtÞ; . . . ; yNðtÞ ]T ðA:1Þ
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where t refers to time and N is the number of cortical areas

considered.

Supposing that the following MVAR process is an

adequate description of the data set Y:

Xp

k¼0

KðkÞ!ðt � kÞ ¼ EðtÞ with K(0) ¼ I ðA:2Þ

where Y(t) is the data vector in time, E(t) = (e1(t),..., eN)T

is a vector of multivariate zero-mean uncorrelated white

noise processes, L(1), L(2) ... L(p) are the N · N matrices

of model coefficients and p is the model order. In the

present study, p was chosen by means of the Akaike

Information Criteria (AIC) for MVAR processes [1] and

was used for MVAR model fitting to simulations, as well as

to experimental signals. It has been noted that, although the

sensitivity of MVAR performance depends on the model

order, small model order changes do not influence results

[8, 22].

A modified procedure for the fitting of MVAR on

multiple trials was adopted [3, 8, 21]. When many real-

izations of the same stochastic process are available, as in

the case of several trials of an event-related potential (ERP)

recording, the information from all the trials can be used to

increase the reliability and statistical significance of the

model parameters. In the present study, both in the simu-

lation and in the application to real data, the data were in

the form of several trials of the same length, as described in

detail in the following sections.

Once an MVAR model is adequately estimated, it be-

comes the basis for subsequent spectral analysis. To

investigate the spectral properties of the examined process,

Eq. (2) is transformed to the frequency domain:

Kðf Þ Yðf Þ ¼ Eðf Þ ðA:3Þ

where:

Kðf Þ ¼
Xp

k¼0

KðkÞ e�j2pfDtk ðA:4Þ

and Dt is the temporal interval between two samples.

Equation (3) can be rewritten as:

Yðf Þ ¼ K�1ðf Þ Eðf Þ ¼ Hðf Þ Eðf Þ ðA:5Þ

H(f ) is the transfer matrix of the system, whose element Hij

represents the connection between the jth input and the ith

output of the system.

Baccalà and Sameshita [11] define the Partial Directed

Coherence as:

pijðf Þ ¼
Kijðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

k¼1

Kkiðf ÞK�kjðf Þ
s ðA:6Þ

In this study, the squared version of PDC (sPDC) was

used [4]:

hijðf Þ ¼
Kijðf Þ
�� ��2

PN

m¼1

Kmjðf Þ
�� ��2

ðA:7Þ

The hij(f), describes the directional flow of information

from the activity in the ROI yj(n) to the activity in yi(n),

whereupon common effects produced by other ROIs yk(n)

on the latter are subtracted, leaving only a description that

is specifically from yj(n) to yi(n).

sPDC values are in the interval (0, 1), and the normal-

ization condition

XN

n¼1

hniðf Þ ¼ 1 ðA:8Þ

is verified. According to this condition, hij(f) represents the

fraction of the time evolution of ROI j directed to ROI i,

compared to all of j’s interactions with other ROIs.

For PDC, high values in a frequency band represent the

existence of an influence between any given pair of areas in

the data set.

Independent component analysis and the ThinICA

algorithm

Independent Component Analysis is a process which can

extracts a new set of statistically independent components

represented by the n-dimensional vector y(t) = W x(t)

from exploratory (observed) input data represented by the

m-dimensional vector x(t) (t = 1,2,...,N). The extracted

components correspond to estimates of hidden or latent

variables in the data called sometimes sources. This pro-

cess assumes that a time series x(t) has an embedded

mixing process of the form x(t) = A s(t), where A denotes

an unknown mixing matrix and s(t) is a vector representing

unknown hidden (latent) variables or sources. ICA can be

considered as a demixing or a decomposition process

which is able to recover the original sources, i.e.,

yðtÞ ¼ ŝðtÞ, through the linear transformation

y(t) = W x(t). The fact that two random variables are un-

correlated does not also imply that they are independent.

This fact is lost in using other methods such as Principal

Component Analysis (PCA). The ICA approach seeks to
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find such independent directions through maximization of a

suitable cost function called sometimes contrast function,

which is a measure of statistical independence. Such

functions can be maximized or minimized using various

optimization methods, including artificial neural networks.

Independent component analysis can be considered as

an extension of PCA. In PCA, the input data x(t) is dec-

orrelated to find the components that are maximally

uncorrelated according to second-order statistics. PCA

gives orthogonalized and normalized outputs according to

the second-order statistics by minimizing the second-order

moments. The principal components can still be dependent

however. The problem of ICA or blind source separation of

sources mixed instantaneously can be defined as follows.

Let’s assume that we have available to us a set of multi-

variate time series fxiðtÞg ði ¼ 1; 2; . . . ;mÞ. We assume

also that these time series, for example corresponding to

individual EEG electrodes, are the result of an unknown

mixing process defined by

xiðtÞ ¼
Xn

j¼1

aij sjðtÞ ði ¼ 1; 2; . . . ;mÞ ðA:9Þ

or equivalently in compact matrix form fxiðtÞg
ði ¼ 1; 2; :::;mÞ, where A is an unknown mixing matrix

sized m by n, and sðtÞ ¼ ½s1ðtÞ; s2ðtÞ; . . . ; snðtÞ�T are hidden

(latent) components called the sources. We seek to estimate

the unknown sources sj(t) using only the observed data

vectorxðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . . ; xmðtÞ�T. The problem is to

find a demixing or separating matrix W such that

y(t) = W x(t) estimates the hidden independent compo-

nents. It is possible that there could be a different numbers

of sensors than sources, that is, A may not be square. If it is

assumed that the number of sources (hidden components) is

the same as the number of time series or observed inputs n,

then A is a square (n by n) matrix. If W = A–1, then

y(t) = s(t), and perfect separation occurs.

In practice, the optimal y will be some permutated and

scaled version of s, since it is only possible to find W such

that WA = PD where P is a permutation matrix and D is a

diagonal scaling matrix. In general, the ICA of a random

vector x(t) is obtained by finding a n by m, (with m ‡ n),

full rank separating (transformation) matrix W such that

the output signal vector yðtÞ ¼ ½y1ðtÞ; y2ðtÞ; . . . ; ynðtÞ�T
(independent components) estimated by y(t) = W x(t), are

as independent as possible.

Compared with the PCA, which removes second-order

correlations from observed signals, ICA further removes

higher-order dependencies. Statistical independence of

random variables is a more general concept than decorre-

lation. Overall, we can state that random variables yi(t) and

yi(t) are statistically independent if knowledge of the values

of yi(t) provides no information about the values of yi(t).

Mathematically, mutually independence of m random

variables yjðtÞ; i ¼ 1; . . . ;m can be expressed by

pðyÞ ¼ pðy1; . . . ; ymÞ ¼
Qm

j¼1

pðyiÞ, where p(y) denotes the

joint probability density function (pdf) of the random

variable y(t). In other words, signals are independent if

their joint pdf can be factorized into marginal distributions.

Second-order algorithms are not able to extract or sep-

arate random components without temporal structures such

as i.i.d. (independent identically distributed) components.

Therefore, in this study we used the ThinICA (or Thin SVD

ICA) algorithm developed by Cruces and Cichocki [18].

The ThinICA algorithm can be considered as an extension

of lower-order algorithms since it employs the second-or-

der and higher-order statistics for the estimation of the

rotation matrix U and, consequently, of the demixing

matrix W ¼ Â
�1 ¼ UTQ. The ThinICA algorithm is able

to extract simultaneously arbitrary number of components

specified by the user. The algorithm is based on a criterion

that jointly performs the maximization of several third-

and/or fourth-order cumulants of the outputs and/or sec-

ond-order time-delayed covariance matrices, i.e., on the

maximization of the following contrast function:

JðUÞ ¼
Xn

i¼1

X

s

as½Cumðyiðt1Þ; yiðt2Þ; . . . ; yiðtPÞÞ�2

ðA:10Þ

subject to the constraints UT U = In, where as are weight-

ing coefficients (typically, equal to 1) and Cum means

cumulants for different time tuples s ¼ t1; t2; . . . ; tPf g. In

practice, we have used only the 2nd, 3rd and 4th order

cumulants [16, 18].

The contrast function employed for ThinICA combines

the robustness of the joint approximate diagonalization

techniques with the flexibility of the methods for blind

signal extraction. Its maximization leads to hierarchical

and simultaneous ICA extraction algorithms which are

based on the thin SVD factorizations. The practical

implementation of the ThinICA algorithm is available on

the following web page: http://www.bsp.brain.riken.jp/

ICALAB/.

After extracting the independent components or per-

forming blind separation of signals (from the mixture), we

can examine the effects of discarding some non-significant

components by reconstructing the observed EEG data from

the remaining components. This procedure is called defla-

tion or reconstruction, and allows us to remove unnecessary

(or undesirable) components that are hidden in the mixture

(superimposed or overlapped EEG data). The deflation

algorithm eliminates one or more components from the

vector y(t) and then performs the back-propagation
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Xr ¼W�Yr, where Xr(t) is a vector of reconstructed input

(exploratory) data X(t), W� ¼ Â is a generalized pseudo

inverse matrix of the estimated demixing matrix W, and

yr(t) is the vector obtained from the vector of independent

components y(t) after removal of all the undesirable com-

ponents (i.e., by replacing them with zeros).

ICA is a process which statistically reduces a possibly

very multidimensional complex data set into sub-compo-

nents which are statistically independent, and which are

expected to capture most of the useful information

regarding the underlying events. Since properly estimated

ICs are statistically independent from each other, they can

be used to create a new set of explanatory variables in order

to investigate brain signal relationships more efficiently

than it would be possible with the unprocessed data, and

can be used by exploratory techniques like DTF or PDC.

Estimation of Cortical Source Current Density

The solution of the following linear system:

AL x = bþ n ðA:11Þ

provides an estimation of the dipole source configuration x

that generates the measured EEG potential distribution b.

The system includes also the measurement noise n,

assumed to be normally distributed. AL is the lead field

matrix, where each jth column describes the potential

distribution generated on the scalp electrodes by the jth

unitary dipole. The current density solution vector n of A.4

was obtained as [27]:

n ¼ arg min
x

ALx� bk k2
M þ k2 xk k2

N

� �
ðA:12Þ

where M, N are the matrices associated to the metrics of

the data and of the source space, respectively, k is the

regularization parameter and || x ||M represents the M norm

of the vector x. The solution of A.5 is given by the inverse

operator G:

n = Gb; G ¼ N�1A0L ALN�1A0L þ kM�1
� ��1 ðA:13Þ

An optimal regularization of this linear system was

obtained by the L-curve approach [30, 31]. As a metric in

the data space we used the identity matrix, while as a norm

in the source space we use the following metric:

ðN�1Þii ¼ A�ik k�2 ðA:14Þ

where (N–1)ii is the ith element of the inverse of the

diagonal matrix N and all the other matrix elements Nij are

set to 0. The L2 norm of the ith column of the lead field

matrix A is denoted by ||A.i||.

Estimated cortical waveforms

Using the relations described above, an estimate of the

signed magnitude of the dipolar moment for each one of

the 5000 cortical dipoles was obtained for each time

point. As the orientation of the dipole was defined to be

perpendicular to the local cortical surface in the head

model, the estimation process returned a scalar rather

than a vector field. To obtain the cortical current wave-

forms for all the time points, we used a unique ‘‘quasi-

optimal’’ regularization k value for all the analyzed EEG

potential distributions. The quasi-optimal regularization

value was computed as an average of the several k val-

ues obtained by solving the linear inverse problem for a

series of EEG potential distributions. These distributions

are characterized by an average Global Field Power

(GFP) with respect to the higher and lower GFP values

obtained from all the recorded waveforms. The instan-

taneous average of the signed magnitude of all the

dipoles belonging to a particular ROI was used to esti-

mate the average cortical activity in that ROI, during the

entire interval of the experimental task. These waveforms

were then subjected to the MVAR estimation, in order to

estimate the connectivity pattern between ROIs. For a

given ROI pair, the significance of the estimated cortical

connectivity pattern was determined by comparison of its

value to a threshold level. To estimate the thresholds for

the functions values indicating lack of transmission, a

surrogate data generation procedure was performed [3].

The time series data from each ROI were randomly

shuffled in order to remove interactions between signals.

The connectivity estimators were then computed on these

surrogate data. The procedure was repeated 1,000 times,

and an empirical distribution was generated. The signif-

icance threshold was set at 0.01. Only values beyond this

threshold were considered to indicate the existence of a

connection between each pair of ROIs.
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10. Baccalà LA. On the efficient computation of partial coherence

from multivariate autoregressive model. In: Callaos N, Rosario

D, Sanches B editors. Proceedings of the 5th world conference

cybernect is systemics and informatics SCI 2001, Orlando; 2001.
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